The first steps in the life of a short GRB

Miguel Angel Aloy Toras

Max-Planck-Institut für Astrophysik

A collaboration with

E. Müller & H.-T. Janka

GKDS, PIUGEIIILUIS.

- More than 200 competing models
- Difficult to identify because of lack of observational accuracy
- Most promising: catastrophic collapse event | actual merging process: ~1 msec
 - 1) Death of massive stars
 - a) Collapsars (Woosley)
 - b) Hypernovae (Pacynski)
 - ⇒ Sources of long GRBs
 - 2) Mergers of compact binaries (Pacynski, Goodman, Eichler et al., Mochkovitch et al.)
- ⇒ Sources of short GRBs & strong GWs

Common scenario:

A stellar mass black hole accretes several M_{sol} of matter and produces olativictic nair firehall

Black hole with accretion torus

GKDS, Progenitors, long bursts

Collapsars (Woosley 1993)

- Collapse of a massive (WR) rotating star that does not form a successful SN to a BH (M_{BH} ~ 3M_{sol}) surrounded by a thick accretion disk. The hydrogen envelope is lost by stellar winds, interaction with a companion, etc.
- The viscous accretion onto the BH \Rightarrow strong heating \Rightarrow thermal $v\bar{v}$ annihilating preferentially around the axis \Rightarrow formation of a relativistic jet ($\square > 10$).

GKDS, Progenitors. Short pursus:

Merger of a system of compact binaries (SCBs):

- After the merger of a SCB a central BH ($M_{BH} \sim 2-3M_{sol}$) girded by a thick accretion torus ($M_{torus} \sim 0.05 0.3M_{sol}$).
- Once the thick disk is formed, up to $\sim 10^{51}$ ergs can be released above the poles of the BH in a region that contains $< 10^{-5}$ M_{sun} of baryonic matter due to vv annihilations preferentially near axis \Rightarrow acceleration to ultrarelativistic speeds.

• If the observed duration $T_{\rm obs}$ is related to the lifetime of the system $T_{\rm a}$ this kind of events can only belong to the class of short GRBs because

 $T_{disk} \sim 0.05 - 0.5 s.$

The first steps in the life of a short GKB

Our goals:

- 1. The viability of the scenario of merging SCBs for producing ultrarelativistic outflows (winds, jets, radial outflows?).
- 2. Mechanism of *collimation* (if any) of the outflowing plasma.
- 3. Expected durations of the GRB events generated in this framework and their relation to the time during which the source of energy is active (T_a) .

Initial model

Two approaches:

Type-A: Put a toroidal-like distribution of matter and angular momentum around a Schwarzschild BH (guided by the Newtonian simulations of Ruffert & Janka 2001) and let it relax to an equilibrium configuration.

Ruffert & Janka (2001), A&A, 380, 544

$$M_{torus} \sim 0.17 M_{sun}$$

 $M_{BH} \sim 3 M_{sun}$
 $M_{env} \sim 10^{-2} M_{sun}$

Relaxed initial model

Initial model

Two approaches:

Type-B: Follow Font & Daigne (2003) prescription to build up equilibrium tori around a BH. Outside use Michel (1972) spherical accretion solution.

$$M_{torus} \sim 0.17 M_{sun}$$

 $M_{BH} \sim 2.44 M_{sun}$
 $M_{env} \sim 10^{-7} M_{sun}$

Ruffert & Janka (2001), A&A, 380, 544

MOUGHING THE CHERRY TELEBOOK

Guided by previous results of Janka, Ruffert et al. showing that both in NS-NS mergers (Ruffert & Janka 1999) and in BH-NS mergers (Janka et al. 1999), can be released up to 10⁵¹ ergs above the poles of the black hole in a region that contains less than 10⁻⁵ M_{sun} of baryonic matter. The dependence in z-distance is:

$$q(z) = q_0 / z^n$$
; $z = r \sin\theta$; $n \sim 5$; $\theta_0 \sim [30^\circ, 75^\circ]$

Janka at al (1000) An I 527 I 30

Ruffert & Janka (1999) A&A 344 573

MONOR ONPIOLON NP to HOM

- Energy deposition region:

Cone of 30° to 75° around the rotation axis that extends from R_{\min} = 1.02 - 2.05 $R_{\rm s}$ (innermost boundary) to infinity

- Grids: r (log spaced) x □ (uniform)

Type A: 460 x 200 zones. $R_{max} = 3 \times 10^9 \text{ cm}$ Type B: 500 x 200 zones. $R_{max} = 2 \times 10^{10} \text{ cm}$

Model	\dot{E}	θ_0	$v_p[c]$	Γ_{max}	$ heta_w$	M_f [gr]
A01	10^{49}	30°	(0.67)0.62	(17.67)17.87	(< 1°) < 1°	$3.6\cdot 10^{25}$
A02	$2\cdot 10^{50}$	30°	(0.63)0.63	(81.10)231.81	$(11.3^{\circ})6^{\circ}$	$2.2\cdot 10^{27}$
A03	$2\cdot 10^{50}$	45°	(0.80)0.67	(10.89)26.71	$(9.5^\circ)2.9^\circ$	$2.4\cdot 10^{27}$
A04	$2\cdot 10^{50}$	75°	(0.67)-	(6.97)-	(8.5°) -	-
A05	10^{51}	30°	(0.99)0.82	(84.00)562.25	$(15.0^\circ)15^\circ$	$9.7\cdot 10^{27}$
A06	10^{51}	45°	(0.97)-	(79.61)-	(15.8°) -	-
A07	10^{51}	75°	(0.90)0.60	(12.97)37.36	$(12.5^\circ)8.13^\circ$	$7.4\cdot 10^{27}$
A08	10^{50}	31.4°	(0.83)0.70	(19.80)19.99	$(3.8^\circ)2.9^\circ$	$3.0\cdot 10^{26}$
A09	$5\cdot 10^{51}$	30°	(0.70)0.97	(90.74)748.06	$(23^{\circ})26^{\circ}$	$4.0\cdot 10^{28}$
B01	$2\cdot 10^{50}$	45°	(0.97)0.999999	(27.49)509.03	$(24^\circ)22^\circ$	$3.1\cdot 10^{26}$
B02	$2\cdot 10^{50}$	60°	(0.999)0.999996	(52.32)420.57	$(24^{\circ})19^{\circ}$	$2.2\cdot 10^{27}$
B03	$2\cdot 10^{50}$	75°	(0.999)0.99990	(129.57)493.03	$(25^\circ)19^\circ$	$2.6\cdot 10^{28}$
B04	10^{49}	45°	(0.95)0.99988	(42.56)333.58	$(26^\circ)20^\circ$	$2.4\cdot 10^{25}$
B05	10^{51}	45°	(0.99)0.999997	(70.68)632.26	$(33^{\circ})27^{\circ}$	$1.3\cdot 10^{27}$

I VOUUILO

- $-P_{thr} \sim 10^{48-49} \text{ erg/s}$
 - * in the initial model matter falls in through the axis of rotation (v_{in}~0.6c- 0.97c)
 - * model dependent but the feature may be generic
 - * our threshold is probably higher than in real mergers (type-A) or maybe irrelevant in type-B models.

- All the successful models produce relativistic *collimated* outflows:
- ⇒ initially the disk provides the collimation via cocoon/disk interaction, i.e., the opening angle of the beam is set by the torus inclination.
 - pure hydrodynamic collimation (no need for B- fields).
 - * For low dE/dt \Rightarrow jet injection conditions are set after \sim 0.5-1 ms (torus crossing time) with $\square_h \sim$ 3-5.

Type A

Morphology: For P> P_{thr} ~ 10^{49} erg/s the outflows are either knotty, narrow, relativistic jets (P < 10^{51} erg/s) or conical, smooth, wide angle, ultrarelativistic winds (P > 10^{51} erg/s).

Outflow open. half-angle: It is determined by the high density external medium (low P) or by the inclination angle of the side walls of the torus (large P).

Propagation speed:

between $\sim 0.6c$ (P $< 10^{51}$ erg/s) and $\sim 0.97c$ (P $> 10^{51}$ erg/s)

- opening angle ~ 26° ; beaming angle ~ $1/\square$ ~ 0.1°
- * The *beam* itself has a length ~ 65% of the jet.
 - -The distance from the Mach disc to the bow shock grows almost selfsimilarly.
- * No internal structure:
 - consequence of the constant high dE/dt
 (but it doesn't happen for low dE/dt!)
 - correspond to a relativistic conical wind with adiabatic index ~ 1.6 (Levinson & Eichler 2000).

* After 150 ms there is no sign of □ saturation (□ increasing while the source is active)

- opening angle ~ 2^0 ; beaming angle ~ $1/\square$ ~ 5^0
- * The beam has a length ~90% of the jet.
 - The distance from the Mach disc to the bow shock grows almost selfsimilarly.
- * A lot of internal structure (knotty jet):
 - consequence of the P close to the threshold but also due to KHinstabilities
 - the final outcome won't be a short GRB, observational signature?
- * After 150 ms there

 saturates ~ 15

Type A. Dependence with \square_0 : Increasing \square_0 while keeping P=2x10⁵⁰ erg/s:

1.- less energy density ⇒ transition from smooth wind to knotty jet (even at

early times).

LOUGILO

Type A. Dependence with \Box_0 : Increasing \Box_0 while keeping P=2x10⁵⁰ erg/s: 2.- larger torus overlap of the deposition region \Rightarrow increase of T and e.

Type A. Dependence with \square_0 : Increasing \square_0 while keeping P=2x10⁵⁰ erg/s:

3.- similar flow opening angle $\square_{\rm w} \sim 10^{\circ}$ - 13° < torus angle

LOUGILO

Type B

Morphology: For P> $P_{thr} \sim 10^{48}$ erg/s the outflows are always conical, wide angle, ultrarelativistic jets.

Outflow opening half-angle: $\sim 20^{\circ}$ to 25° . It is determined by the inclination angle of the side walls of the torus (large P).

Propagation speed: larger than ~0.9999c

Type B. Dependence with \square_0 : Increasing \square_0 while keeping P=2x10⁵⁰ erg/s:

1.- less energy density ⇒ transition from non-smooth wind to knotty jet.

Type B. Dependence with \square_0 : Increasing \square_0 while keeping P=2x10⁵⁰ erg/s:

- 1.- less energy density ⇒ transition from non-smooth wind to knotty jet.
- 2.- larger torus overlap of the deposition region \Rightarrow increase of density and T.

Type B. Dependence with \square_0 : Increasing \square_0 while keeping P=2x10⁵⁰ erg/s:

- 1.- less energy density ⇒ transition from non-smooth wind to knotty jet.
- 2.- larger torus overlap of the deposition region \Rightarrow increase of density and T.
- 3.- larger asymmetry of the bubble ⇒ equatorial outflow!

OUL UNITED TO UNITED TO

The typical time scale in which the merging of SCBs may release energy is of some fractions of a second.

We have swiched off the energy deposition after T_a =0.1s and followed the subsequent evolution of two models: one of type-A (P =5x10⁵¹ erg/s in \Box_0 =30°) and another of type-B (P =2x10⁵⁰ erg/s in \Box_0 =45°).

A condition to produce a successful GRB is: $V_{rear} \le V_{front}$ (a)

Type A

Unsuccessful GRB: Condition (a) does not hold because the environment is too dense and the front shock of the fireball decelerates.

Type B

May produce a successful GRB: Condition (a) is $V_{rear} < V_{front}$ in this case. Thus, the fireball stretches radially and, it can produce events with durations of several seconds, i.e., $T_a \ll \Box T_{obs}$.

TUSI-SWILLITUH EVUIULIUH. I YPE-M

- For dE/dt = $5x10^{51}$ erg/s the Lorentz factor grows up to ~ 1000 in 100 ms.

BUT:

- Switching off the energy release after 100 ms leads to an unsuccessful GRB!.

LOSI-SMITCH CACINTION I Abe-W

LOSI-SMITCHI-CHI CACHATIONI' I AAC-D

- ❖ For P = $2x10^{50}$ erg/s the Lorentz factor grows up to ~ 1000 in 100 ms.
- ❖ Switching off the energy release leads to an almost selfsimilar growth ⇒ it is possible to produce a successful GRB!.

LOSI-SMITCHI-CHI CACHATIONI' I AAC-D

The fireball has a large internal energy reservoir even after 4.5T_a

- ⇒ there is still room for further acceleration
- ⇒ no sign of saturation

LOSI-SMITCHI-CHI CACHATIOH I AACA

The density structure is highly irregular

⇒ internal shock develope although the resolution at R>10¹⁰ cm is not good enough and a part of the structure created is erased.

LOSI-SMITCHI-CHI CACHATIOH I AAC-D

- \Rightarrow The radially averaged variables display a *non-monotonic* shape as a function of \square .
- ⇒ The internal energy as a function of the solid angle is *not constant*.

LOSI-SMITCHI-CHI CACHATIOH I AAC-D

⇒ The sideways expansion in the comoving frame is subsonic

 $t = 0.000 \, s$

t = 0.095 s

t = 0.190 s

t = 0.285 s

t = 0.380 s

t = 0.437 s

30

35

20

⇒ A part of the fireball is *contracting!*.

Ladiany avolagos promoc

The fireball structure is inhomogeneous both in radial and angular directions ⇒ disagrement (up to now) with both *Universal* or *Uniform* models.

Universal jet model:

$$\epsilon(\theta, t_0) = \epsilon_0 \Theta^{-a}, \quad \Gamma(\theta, t_0) = 1 + (\Gamma_0 - 1)\Theta^{-b}, \quad \Theta \equiv \sqrt{1 + \left(\frac{\theta}{\theta_c}\right)^2}$$

$$\approx \begin{cases} 1, & \text{for } \theta \leqslant \theta_c, \\ \theta/\theta_c, & \text{for } \theta \geqslant \theta_c. \end{cases}$$

Best model fit to the Lorentz factor

$$\bar{\Gamma} = 1 + \frac{a_0 + a_1 x + a_2 x^2 + a_3 x^3}{a_4 + a_5 x + \exp(a_6 x)}$$

Likely *first steps* in the life of short GRB (from t=0 to t=0.460 s)

Model B01: $P = 2x10^{50} \text{ erg/s}$

Concluding remarks:

Releasing energy above the poles at rates and with a functional dependence suggested by Janka et al (1999) relativistic, collimated outflows are produced.

Above our P_{thr}, we generate conical baryon poor winds (BPW) whose opening angle depend on a complex interaction between the fireballs and the walls of the torus and/or the density of the external medium (type-A).

Fixing the deposition angle and increasing the energy rate produces BPWs, more massive and with higher kinetic energy. Once BPWs are formed, either they follow easy, analytic power laws (type-A) or they are non-smooth and do not fit to any power law (type-B).

A condition to produce a successful GRB is: $V_{rear} \le V_{front}$ which doesn't hold in type-A models but becomes $V_{rear} < V_{front}$ in type-B ones.

The fireball stretches radially and, it can produce events with durations of several seconds.

The fireball structure is inhomogeneous both in radial and angular directions

⇒ disagrement (up to now) with both Universal or Uniform models